Evaluate Cluster Analysis

외부 평가 자카드계수 평가
분류모형 평가 방법을 응용
내부 평가 단순계산법
군집 간의 거리를 계산하여 평가
엘보 메소드
install.packages(‘arules’)

> items<-c('chicken', 'coke', 'cider')

> count<-sample(3, 100, replace=T)

> transactionId<-c()

> transactionItem<-c()

> for(i in 1:100){

+  current_transaction<-sample(items, count[i])

+  for(j in 1: length(current_transaction)){

+   transactionId<-c(transactionId, i)

+   transactionItem<-c(transactionItem, current_transaction[j])

+  }

+ }

> transaction<-data.frame(transactionId, transactionItem)

> head(transaction, 4)

  transactionId transactionItem

1             1         chicken

2             2           cider

3             2         chicken

4             2            coke


> library(arules)

Loading required package: Matrix


Attaching package: ‘arules’


The following objects are masked from ‘package:base’:


    abbreviate, write

> transactionById<-split(transaction$transactionItem, transaction$transactionId)

> transactionById_processed<-as(transactionById, 'transactions’)


# 연관분석 실시

# parameter를 활용하여 최소 지지도(supp)와 최소 신뢰도(conf)값 설정(default value supp=0.1, conf=0.8)

> result<-apriori(transactionById_processed, parameter=list(supp=0.2, conf=0.7))


> result

set of 10 rules 

> inspect(result)

     lhs                rhs       support confidence coverage lift      count

[1]  {}              => {chicken} 0.76    0.7600000  1.00     1.0000000 76   

[2]  {}              => {coke}    0.74    0.7400000  1.00     1.0000000 74   

[3]  {cider}         => {chicken} 0.53    0.7681159  0.69     1.0106789 53   

[4]  {cider}         => {coke}    0.55    0.7971014  0.69     1.0771641 55   

[5]  {coke}          => {cider}   0.55    0.7432432  0.74     1.0771641 55   

[6]  {chicken}       => {coke}    0.54    0.7105263  0.76     0.9601707 54   

[7]  {coke}          => {chicken} 0.54    0.7297297  0.74     0.9601707 54   

[8]  {chicken,cider} => {coke}    0.43    0.8113208  0.53     1.0963794 43   

[9]  {cider,coke}    => {chicken} 0.43    0.7818182  0.55     1.0287081 43   

[10] {chicken,coke}  => {cider}   0.43    0.7962963  0.54     1.1540526 43